
CENG3430 Rapid Prototyping of Digital Systems

Lecture 09:

Rapid Prototyping (III) –

High Level Synthesis

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

High-Performance Logic in PL?

CENG3430 Lec09: High Level Synthesis 2022-23 T2 2

• Programmable Logic (PL) is ideal for high-speed

and high-parallel logic and arithmetic.

– However, it might be very hard to implement sometimes.

Ex: Neural Network

Troublesome!

Outline

• High-Level Synthesis Concept

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

– Algorithm Optimizations

• Loop

• Array

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 2022-23 T2 3

High-Level Synthesis (HLS)

• High-level synthesis (HLS) simplifies the circuit

description by abstracting/hiding low-level details with

high-level (i.e., algorithmic-level) representations.

CENG3430 Lec09: High Level Synthesis 2022-23 T2 4

The structural level

involves instantiating,

configuring and connecting

hardware elements down to

the levels of LUTs and FFs.

The register transfer level

(RTL) interprets operations

occurring between registers.

The behavioral HDL

describes how the circuit

“behaves” (what we use!)

The high level expresses

designs at an algorithmic

level of abstraction.

High

Level

Synthesis

Logic

Synthesis

HLS vs. Logic Synthesis

• High-level synthesis

means synthesizing the

high-level code into an

HDL description.

• In FPGA design, the term

“synthesis” usually refers

to logic synthesis.

– The process of interpreting

HDL code into the netlist.

• In the HLS design flow,

both types of “synthesis”

are applied (one after the

other)!
CENG3430 Lec09: High Level Synthesis 2022-23 T2 5

Why High-Level Synthesis (HLS)?

1) HLS from high-level languages is convenient.

– Engineers are comfortable with languages such as C/C++.

2) The designers simply direct the process, while the

HLS tools (i.e., Vivado HLS) implement the details.

– Designs can be generated rapidly; but the designer must

trust the HLS tools in implementing lower-level functionality.

3) HLS separates the functionality and implementation.

– The source code does not fix the actual implementation.

– Variations on the implementations can be created quickly

by applying appropriate “directives” to the HLS process.

• But there is no need to explicitly change to the source code.

In one word: HLS shoots for productivity.

CENG3430 Lec09: High Level Synthesis 2022-23 T2 6

Design Metrics in HLS

• Hardware design always faces a trade-off between:

1) Area, or Resource Cost — the amount of hardware

required to realize the desired functionality;

2) Speed (specifically throughput or latency) — the rate at

which the circuit can process data.

CENG3430 Lec09: High Level Synthesis 2022-23 T2 7

Undesired

Desired

Outline

• High-Level Synthesis Concept

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

– Algorithm Optimizations

• Loop

• Array

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 2022-23 T2 8

Vivado HLS

CENG3430 Lec09: High Level Synthesis 2022-23 T2 9

Vivado HLS Process (It’s automatic!)

• The HLS process internally involves two major tasks:

1) The interface of the design, i.e., its top-level connections;

2) The functionality of the design, i.e., the algorithm(s).

CENG3430 Lec09: High Level Synthesis 2022-23 T2 10

Interface

Synthesis

Vivado HLS: Interface Synthesis

• The interface can be created manually or inferred

automatically from the code (interface synthesis).

– The ports are inferred from the top-level function

arguments and return values of the source C/C++ file;

– The protocols are inferred from the behavior of the ports.

CENG3430 Lec09: High Level Synthesis 2022-23 T2 11

CENG3430 Lec09: High Level Synthesis 2022-23 T2

Vivado HLS: Algorithm Synthesis

• The algorithm synthesis comprises three primary

stages, which occur in the following order:

1) Extraction of Data Path and Control: Analyze the high-

level code and interpret the required functionality;

3) Optimizations: Direct the RTL result towards desired

optimizations via constraints and directives (i.e., pragmas)
without explicitly changing the high-level code! 12

2) Scheduling and Binding:

Translate high-level code

& bind the RTL operations

onto the target device;

• It may result in different (i)
latency, (ii) throughput, and

(iii) amount of resources used.

• By default, Vivado HLS

optimizes the area. Ex: Calculating the average of ten numbers.

https://china.xilinx.com/html_docs/xilinx2019_1/sdsoc_doc/hls-pragmas-okr1504034364623.html#wqn1504034365505

Revisit HLS: How Directives Work?

CENG3430 Lec09: High Level Synthesis 2022-23 T2 13

#pragma HLS pipeline
#pragma HLS unroll
...

Loop Optimizations

• Loops are used extensively in programming.

– It constitute a natural method of expressing operations that

are repetitive in some way.

• By default, Vivado HLS seeks to optimize area.

– I.e., loops time-share a minimal set of hardware resources.

• The operations in a loop are executed sequentially.

• The next iteration can only begin when the last is done.

• Loop optimizations can be made using directives.

– Allowing the resulting implementation to be altered with just

few or even no changes to the software code.
CENG3430 Lec09: High Level Synthesis 2022-23 T2 14

Loop Optimization #1: Pipelining

• Loop pipelining allows the operations in a loop to be

implemented in a concurrent manner.

– The initiation interval (II) is the number of clock cycles

between the start times of consecutive loop iterations.

• To pipeline a loop, put the directive “#pragma HLS
pipeline [II=1]” at the beginning of that loop.

– Vivado HLS automatically tries to pipeline the loop with the

minimum initiation interval (II) (i.e., II=1).

CENG3430 Lec09: High Level Synthesis 2022-23 T2 15

#pragma HLS pipeline

Class Exercise 9.1

CENG3430 Lec09: High Level Synthesis 2022-23 T2 16

• Assume it takes a total of six cycles to complete the

loop originally. How many cycles are needed if we

pipeline the loop with initiation interval (II) set to 2?

Rolled Loops

Loop Optimization #2: Unrolling

• Loop unrolling creates copies of the loop body to

lead to higher parallelism and throughput.

– Unrolling a loop by a factor of N means to create N copies.

• N < the total number of loop iterations? It is called a “partial unroll”.

• N = the total number of loop iterations? It is called a “full unroll”.

• To unroll a loop, put the directive “#pragma HLS
unroll [factor=N]” at the beginning of that loop .

– The loop will be fully unrolled by default.

CENG3430 Lec09: High Level Synthesis 2022-23 T2 18

Loops Unrolled by a Factor of 2

#pragma HLS unroll factor=2

Class Exercise 9.2

• How many loop iterations are

needed if we partially unroll the

loop with a factor of 2?

CENG3430 Lec09: High Level Synthesis 2022-23 T2 19

Loop Optimization #3: Merging (1/2)

• In some cases, there might be multiple loops

occurring one after the other in the code.

– For instance, the addition loop is followed by a similar loop

which multiplies the elements of the two arrays.

CENG3430 Lec09: High Level Synthesis 2022-23 T2 21

Loop Optimization #3: Merging (2/2)

• One possible optimization is to merge the two loops.

– That is, both the addition and multiplication operations are

conducted within the single loop body.

• To merge loops, put directive “#pragma HLS
loop_merge” at the beginning of a function/loop body.

– There is no need to explicitly change to the source code!
CENG3430 Lec09: High Level Synthesis 2022-23 T2 22

Loop Optimization #4: Flattening

CENG3430 Lec09: High Level Synthesis 2022-23 T2

• We may also “flatten” nested loops to remove the

loop hierarchy via “#pragma HLS loop_flatten”.

– It saves clock cycles transitioning into/out of an (inner) loop.

– Then, we may achieve better pipeline optimization or apply

larger unrolling factors for higher parallelism.

• It explains why Vivado HLS flattens the nested loops automatically

when the inner loop is pipelined.
23

// flattened loop
for (i=0;i<3*4;i++) {

... statements ...

}

Class Exercise 9.3

• Consider the following example. How many clock

cycles can be saved if the nested loops are flattened?

CENG3430 Lec09: High Level Synthesis 2022-23 T2 24

// flattened loop
for (i=0;i<3*4;i++) {

... statements ...

}

Factor Limiting the Parallelism?

• Loop optimizations aim to achieve higher parallelism.

• One limiting factor for parallelism is the number of

available hardware resources.

– If the loop is pipelined with an initiation interval of one,

there are two read operations.

• If the memory has only one port, then two read operations cannot

be executed simultaneously and must be executed in two cycles.

– Thus, the minimal initiation interval (II) can only be two.

CENG3430 Lec09: High Level Synthesis 2022-23 T2 26

Array Optimization: Partitioning (1/3)

• Arrays are usually mapped to the Block RAM (BRAM)

of PL, where BRAM has limited read/write ports.

• Partitioning an array into smaller arrays increases

the port number and may improve the throughput.

• To partition an array, put directive “#pragma HLS
array_partition [arguments]” within the

boundaries where the array variable is defined.

– variable=<name>: Specifies the array to be partitioned.

– <type>: Optionally specifies the partition type.

– factor=<int>: Specifies the number of smaller arrays that

are to be created/partitioned.

– dim=<int>: Specifies which dimension of a multi-

dimensional array to partition.
CENG3430 Lec09: High Level Synthesis 2022-23 T2 27

Array Optimization: Partitioning (2/3)

• The <type> argument specifies the partition type:

– block: Splits the array into N equal blocks, where N is the

integer defined by the factor argument.

– cyclic: Creates smaller arrays by interleaving elements

from the original array.

– complete: Decomposes the array into individual elements

(it is also the default).

CENG3430 Lec09: High Level Synthesis 2022-23 T2 28

Array Optimization: Partitioning (3/3)

• The <dim> argument specifies which dimension of a

multi-dimensional array to partition.

– Non-zero value: Only the specified dimension is partitioned.

– A value of 0: All dimensions are partitioned.

CENG3430 Lec09: High Level Synthesis 2022-23 T2 29

Class Exercise 9.4

• Consider the matrix multiplication, how should

matrices a and b be partitioned for better parallelism?

CENG3430 Lec09: High Level Synthesis 2022-23 T2 30

Outline

• High-Level Synthesis Concept

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

– Algorithm Optimizations

• Loop

• Array

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 2022-23 T2 32

Lab Exercise: Matrix Multiplication (1/4)

• In this lab, we will develop an accelerator for the

floating-point multiplication on 32x32 matrices.

– The accelerator is connected to an AXI DMA peripheral in

PL and then to the accelerator coherence port (ACP) in PS.

CENG3430 Lec09: High Level Synthesis 2022-23 T2 33

Lab Exercise: Matrix Multiplication (2/4)

• The function to be optimized is defined in “mmult.h”:

CENG3430 Lec09: High Level Synthesis 2022-23 T2 34

 L1 iterates over the

rows of the input matrix A.

 L2 iterates over columns

of the input matrix B.

 L3 multiplies each

element of row vector A

with an element of column

vector B and accumulates it

to the elements of a row of

the output matrix C.

How? Utilize “directives” properly to direct HLS!

Lab Exercise: Matrix Multiplication (3/4)

• Resource Cost (Post-Implementation Utilization)

CENG3430 Lec09: High Level Synthesis 2022-23 T2 35

Should NOT

over-utilize

the resources!

Lab Exercise: Matrix Multiplication (4/4)

• Performance (Latency and HW/SW Speedup)

CENG3430 Lec09: High Level Synthesis 2022-23 T2 36

The higher, the slower!

The lower, the slower!

Should NOT violate timing constraint!
(i.e., the estimated clock period should be less than the target one)

https://www.xilinx.com/htmldocs/xilinx2020_2/hls-guidance/200-887.html

Summary

• High-Level Synthesis Concept

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

– Algorithm Optimizations

• Loop

• Array

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 2022-23 T2 37

	預設章節
	投影片 1: CENG3430 Rapid Prototyping of Digital Systems Lecture 09: Rapid Prototyping (III) – High Level Synthesis
	投影片 2: High-Performance Logic in PL?
	投影片 3: Outline
	投影片 4: High-Level Synthesis (HLS)
	投影片 5: HLS vs. Logic Synthesis
	投影片 6: Why High-Level Synthesis (HLS)?
	投影片 7: Design Metrics in HLS
	投影片 8: Outline
	投影片 9: Vivado HLS
	投影片 10: Vivado HLS Process (It’s automatic!)
	投影片 11: Vivado HLS: Interface Synthesis
	投影片 12: Vivado HLS: Algorithm Synthesis
	投影片 13: Revisit HLS: How Directives Work?
	投影片 14: Loop Optimizations
	投影片 15: Loop Optimization #1: Pipelining
	投影片 16: Class Exercise 9.1
	投影片 18: Loop Optimization #2: Unrolling
	投影片 19: Class Exercise 9.2
	投影片 21: Loop Optimization #3: Merging (1/2)
	投影片 22: Loop Optimization #3: Merging (2/2)
	投影片 23: Loop Optimization #4: Flattening
	投影片 24: Class Exercise 9.3
	投影片 26: Factor Limiting the Parallelism?
	投影片 27: Array Optimization: Partitioning (1/3)
	投影片 28: Array Optimization: Partitioning (2/3)
	投影片 29: Array Optimization: Partitioning (3/3)
	投影片 30: Class Exercise 9.4
	投影片 32: Outline
	投影片 33: Lab Exercise: Matrix Multiplication (1/4)
	投影片 34: Lab Exercise: Matrix Multiplication (2/4)
	投影片 35: Lab Exercise: Matrix Multiplication (3/4)
	投影片 36: Lab Exercise: Matrix Multiplication (4/4)
	投影片 37: Summary

