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High-Performance Logic in PL?

 Programmable Logic (PL) is ideal for high-speed
and high-parallel logic and arithmetic.

— However, it might be very hard to implement sometimes.
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Outline

* High-Level Synthesis Concept

* Vivado High-Level Synthesis
— Inputs and Outputs

— High-Level Synthesis Process
 Interface Synthesis
 Algorithm Synthesis

— Algorithm Optimizations
* Loop
* Array

« Lab Exercise: Accelerating Floating Point Matrix
Multiplication with HLS
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High-Level Synthesis (HLS)

« High-level synthesis (HLS) simplifies the circuit
description by abstracting/hiding low-level details with
high-level (i.e., algorithmic-level) representations.

The high level expresses
& High Level designs at an algorithmic C!C+.+;’System(3
: design entry
level of abstraction.

S TE;;‘U The behavioral HDL
o o Behavioural describes how the circuit
' 9 ‘behaves” (what we use!)
¥at 9
© S _ HDL
- s The register transfer level _
- = RTL (RTL) interprets operations design
> 3 occurring between registers. entry
- &

@

The structural level
involves instantiating,
Structural configuring and connecting
hardware elements down to
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HLS vs. Logic Synthesis

* High-level synthesis High
means synthesizing th | Level
eans synthesizing the High Level Synthesis

nigh-level code into an
HDL description.

* In FPGA design, the term
“synthesis” usually refers
to logic synthesis.

— The process of interpreting
HDL code into the netlist.

* In the HLS design flow,
both types of “synthesis”
are applied (one after the Netlist
other)!
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Why High-Level Synthesis (HLS)?

1) HLS from high-level languages is convenient.

— Engineers are comfortable with languages such as C/C++.

2) The designers simply direct the process, while the
HLS tools (i.e., Vivado HLS) implement the detalls.

— Designs can be generated rapidly; but the designer must
trust the HLS tools in implementing lower-level functionality.
3) HLS separates the functionality and implementation.
— The source code does not fix the actual implementation.

— Variations on the implementations can be created quickly
by applying appropriate “directives” to the HLS process.
» But there is no need to explicitly change to the source code.

In one word: HLS shoots for productivity.
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Design Metrics in HLS

« Hardware design always faces a trade-off between:

1) Area, or Resource Cost — the amount of hardware
required to realize the desired functionality;

2) Speed (specifically throughput or latency) — the rate at
which trle circuit can process data.

high cost, high throughput @

S

=

2 O

3

3 O

e

= O ® .
high cost,

. low throughput
2y _
. low cost, low throughput (poor solutions!) . Desired
® @ Undesired
>

resource cost
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Outline

* Vivado High-Level Synthesis
— Inputs and Outputs

— High-Level Synthesis Process
 Interface Synthesis
 Algorithm Synthesis
— Algorithm Optimizations
* Loop
* Array
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Vivado HLS

Constraints/ C, C++
’ ’ H Testbench
Directives W SystemC W

AR

Vivado HLS

Vivado™ HLS

/ R !

VHDL/Verilog RTL Wra ppeq
RTL Export

RTL Simulation

IP-XACT | IP Core SysGen
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Vivado HLS Process (It’s automatic!) _:“

 The HLS process internally involves two major tasks:
1) The interface of the design, I.e., its top-level connections;
2) The functionality of the design, i.e., the algorithm(s).

Interface Synthesis Interface Synthesis

(or Manual Specification) .ri(hm —— (or Manual Specification)

...Functionality...
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Vivado HLS: Interface Synthesis

 The interface can be created manually or inferred
automatically from the code (interface synthesis).

— The ports are inferred from the top-level function
arguments and return values of the source C/C++ file;

— The protocols are inferred from the behavior of the ports.

void find average of best X (int *average, int samples[8], int X)

ap_memory |nterfac.e ap_vid
protocol SyntheS|S protocol

samples_ce0 average_ap_vlid

1, ,
S

samples_address0

32

samples
port interface

average
port interface

samples_q0 average
\
find_average

S

8 _of best_X

7 { 32

> E * X
5

=4 ap_none
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Vivado HLS: Algorithm Synthesis

 The algorithm synthesis comprises three primary
stages, which occur in the following order:

1) Extraction of Data Path and Control: Analyze the high-
level code and interpret the required functionality;

2) Scheduling and Binding: " == == =SESEEEAERESEAE——S
Translate high-level code  © EXESENm== T
& bind the RTL operations
onto the target device;

« It may result in different (i) 3)
latency, (1) throughput, and
(ill) amount of resources used.

« By default, Vivado HLS = latency = 1
optimizes the area. Ex: Calculating the average of ten numbers.

3) Optimizations: Direct the RTL result towards desired
optimizations via constraints and directives (i.e., pragmas)
without explicitly changing the high-level code! 12

T
-
-

i
1

¥ latency = 5

Resources

Bl el | E

Key:

Adder (fabric)
IR utiplier (fabric)

Adder (DSP48x)

[ X ] Muttiplier (DSP48x)



https://china.xilinx.com/html_docs/xilinx2019_1/sdsoc_doc/hls-pragmas-okr1504034364623.html#wqn1504034365505

Revisit HLS: How Directives Work?

Constraints/ C++,
C, H Testbench
Directives \] SystemC W W

#pragma HLS pipeline
#pragma HLS unroll

Vivado HLS
Vivado™ HLS
‘ RTL Wrappeq

b |

RTL Export
IP-XACT | IP Core SysGen

RTL Simulation
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Loop Optimizations

 Loops are used extensively in programming.
— It constitute a natural method of expressing operations that
are repetitive in some way.
« By default, Vivado HLS seeks to optimize area.

— l.e., loops time-share a minimal set of hardware resources.
* The operations in a loop are executed sequentially.
* The next iteration can only begin when the last is done.

Loop:for(i=1;i<3;i++) { Initiation Interval = 3 cycles
op_Read; RD - >
op_Compute; CMP
op_Write;
} RD CMP - RD CMP -
* Loop optimizations can be made using directives.

— Allowing the resulting implementation to be altered with just

few or even no changes to the software code.
CENG3430 Lec09: High Level Synthesis 2022-23 T2 14




Loop Optimization #1: Pipelining

* Loop pipelining allows the operations in a loop to be
Implemented In a concurrent manner.

Loop:for(i=1;i<3;i++) {

#pragma HLS pipeline

op_Resc: I [ B T
op_Compute; CMP RD

op_Write; —

} Initiation Interval = 1 cycle

— The initiation interval (II) is the number of clock cycles
between the start times of consecutive loop iterations.

* To pipeline a loop, put the directive “#pragma HLS
pipeline [II=1]" at the beginning of that loop.

— Vivado HLS automatically tries to pipeline the loop with the
minimum initiation interval (1I) (i.e., II=1).

CENG3430 Lec09: High Level Synthesis 2022-23 T2
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Class Exercise 9.1

Loop:for(i=1;i<3;i++) {
op_Read; RD

op_Compute; CMP
op_Wrie: ey [ [ow [RET = [ow [T

}

« Assume it takes a total of six cycles to complete the
loop originally. How many cycles are needed if we
pipeline the loop with initiation interval (Il) set to 27?

CENG3430 Lec09: High Level Synthesis 2022-23 T2 16



Loop Optimization #2: Unrolling

 Loop unrolling creates copies of the loop body to
lead to higher parallelism and throughput.

— Unrolling a loop by a factor of N means to create N copies.
* N < the total number of loop iterations? It is called a “partial unroll”.
* N = the total number of loop iterations? It is called a “full unroll”.

Rolled Loops Loops Unrolled by a Factor of 2
int sum = 0; int sum = @;
for(int 1 = 0; 1 < 10; i++) { for(int i = 0; 1 < 10; i+=2) {
#pragma HLS unroll factor=2 » sum += a[1];
sum += a[i]; sum += a[i+1];
} ¥

« To unroll a loop, put the directive “#pragma HLS
unroll [factor=N]" at the beginning of that loop .

— The loop will be fully unrolled by default.

CENG3430 Lec09: High Level Synthesis 2022-23 T2 18




Class Exercise 9.2

* How many loop iterations are | aiiaisisois ¢
needed if we partially unroll the |, ali] = bii] * cli;
loop with a factor of 27 y
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Loop Optimization #3: Merging (1/2)

* |In some cases, there might be multiple loops
occurring one after the other in the code.

— For instance, the addition loop is followed by a similar loop

which multiplies the elements of the two arrays.
void add mult (short c[12], short m[12], short a[12], short b[12])

{ clock cycles
short 3; (Cei;} 1
2
add_loop: for (j=0;3<12;j++) { (ﬂdd;\‘. 24
c[3] = a[3] + b[3]; / /
} FSM f .
hehaviaur\ f__ E"_a
mult loop: for (j=0;3j<12;j++) { ( :5\ 48
m[3] = a[3] * b[3]; g
} | T
} \\_C t 1
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Loop Optimization #3: Merging (2/2)

* One possible optimization is to merge the two loops.

— That is, both the addition and multiplication operations are
conducted within the single loop body.

void add _mult (short c[12], short m[12], short a[12], short b[12])

{ clock cycles
short j; |'//— _}_ﬂ\
'| Cemter) 1
add_mult_loop: for (j=0;7<12;j++) { fggds g\ -
c[3] = al3] + bl[3il; \muy
m[3] = al3i] * b[31; FSM s
} behaviour I| C_e:-:itxj :
¥ | .
I'\,__, ¢

« To merge loops, put directive “#pragma HLS
loop merge” at the beginning of a function/loop body.

— There Is no need to explicitly change to the source code!
CENG3430 Lec09: High Level Synthesis 2022-23 T2 22




Loop Optimization #4: Flattening

We may also “flatten” nested loops to remove the
loop hierarchy via “#pragma HLS loop flatten’.

— It saves clock cycles transitioning into/out of an (inner) loop.

row_loop : for (j=0;3<3;j++) { @ ~nyglhane // flattened loop

for (i=0;i<3*4;i++) {

enter

column_loop : for (k=0;k<d;k++) { inner

repeat inner

loop body 4
\\ inner loop body
= aa |
... statements ... WCE » ... statements ...

) @ . ;;.;, :
— Then, we may achieve better pipeline optimization or apply
larger unrolling factors for higher parallelism.

* |t explains why Vivado HLS flattens the nested loops automatically

when the inner loop is pipelined.
CENG3430 Lec09: High Level Synthesis 2022-23 T2 23




Class Exercise 9.3

Consider the following example. How many clock
cycles can be saved if the nested loops are flattened?

¥ " M ter outer
row_loop : for (§=0;j<3;j++) { @ =
. // flattened loop
7 ' for (i=0;i<3*4;i++) {
enter ? ?
column_loop : for (k=0;k<d;k++) { inner
repeat inner

loop body x 4
\\ inner loop body
aaa |
... statements ... WCE » ... Statements ...

} @ ~’ }
exit outer

CENG3430 Lec09: High Level Synthesis 2022-23 T2 24



Factor Limiting the Parallelism?

* Loop optimizations aim to achieve higher parallelism.

* One limiting factor for parallelism is the number of
avallable hardware resources.
— If the loop is pipelined with an initiation interval of one,

there are two read operations.

« If the memory has only one port, then two read operations cannot
be executed simultaneously and must be executed in two cycles.

— Thus, the minimal initiation interval (II) can only be two.

(A) Pipeline with [I=1 (B) Pipeline with [I=2
void foo(m[2]...) {
RD
op_Read m[0];
op_Read m[1]; RD
RD CMP - op_Compute; CMP RD RD CMP -
op_Write; -
RD | CMP - } <—»| RD RD | CMP -
=1 [1=2

CENG3430 Lec09: High Level Synthesis 2022-23 T2 26



* Arrays are usually mapped to the Block RAM (BRAM)
of PL, where BRAM has limited read/write ports.

e Partitioning an array into smaller arrays increases
the port number and may improve the throughput.

« To partition an array, put directive “#pragma HLS
array _partition [arguments]” within the
boundaries where the array variable is defined.

— variable=<name>: Specifies the array to be partitioned.

- <type>: Optionally specifies the partition type.

- factor=<int>: Specifies the number of smaller arrays that
are to be created/partitioned.

- dim=<int>: Specifies which dimension of a multi-

dimensional array to partition.
CENG3430 Lec09: High Level Synthesis 2022-23 T2 27



(it is also the default).

N-3

N-2

N-1

* The <type> argument specifies the partition type:

- block: Splits the array into N equal blocks, where N is the
Integer defined by the factor argument.

- cyclic: Creates smaller arrays by interleaving elements
from the original array.

- complete: Decomposes the array into individual elements

0

1

(N/2-1)

block >

N/2

| N-2

N-1

cyclic >

CENG3430 Lec09: High Level Synthesis 2022-23 T2

com plete>

N-2

N-1

N-3

N-2

N-1

Array Optimization: Partitioning (2/3) 1%
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* The <dim> argument specifies which dimension of a
multi-dimensional array to partition.
— Non-zero value: Only the specified dimension is partitioned.

— Avalue of 0: All dimensions are partitioned.

my_array[10][6][4] — pariition dimension 3 —=

my_array[10][6][4] — pariition dimension 1 —p=

my_array[10][6][4] —m partition dimension 0 —p= 10x6x4 = 240 registers

CENG3430 Lec09: High Level Synthesis 2022-23 T2

my _array_0[10][6]
my _array_1[10][6]
my _array 2[10][6]

my _array_3[10][6]

my _array_0[6
my_array_1[6
my_array_2[6
my _array J3[6
my _array 4[6
my _array_a[b
my _array_G[o
my_array_ 7[6
my _array 8[6
my _array_9[6

e e e e e e e e e
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Class Exercise 9.4

« Consider the matrix multiplication, how should
matrices a and b be partitioned for better parallelism?

a, a, a, bl b2 b3 C, C, C,
a, a, a, b4 b5 b6 = C, C, C,
a, a, a, b, b, by C, C, G
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Outline

« Lab Exercise: Accelerating Floating Point Matrix
Multiplication with HLS
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Lab Exercise: Matrix Multiplication (1/4)

* In this lab, we will develop an accelerator for the
floating-point multiplication on 32x32 matrices.

— The accelerator is connected to an AXlI DMA peripheral in

PL and then to the accelerator coherence port (ACP) in PS.
ZYNQ

Processing System Programmable Logic

ARM CPU cFo < AXI-Lite > fimer
and L1- U
Caches

ACP < DMA HLS IP

core

Memory Controller

L2-Cache
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Lab Exercise: Matrix Multiplication (2/4)

* The function to be optimized is defined in “mmult.h”:

template <typename T, int DIM>
void mmult hw(T A[DIM] [DIM], T B[DIM] [DIM], T C[DIM] [DIM])

{

// matrix multiplication of a A*B matrix

Ll:for (int ia = 0; ia < DIM; ++ia) & L1 iterates over the
{ . | . . rows of the input matrix A.
L2:for (int 1b = 0; 1b < DIM; ++1b) .
{ < L2 iterates over columns
T sum = 0; of the input matrix B.
L3:for (int id = 0; id < DIM; ++id) & L3 multiplies each
{ . - P element of row vector A
= A * B : i
) sHm rral lad] [1d] [1b]; with an element of column
Clia] [ib] = sum: vector B and accumulates it
VT 1 ] N 7 to the elements of a row of
a1 a2 a3 l:}1 bZ b3 Cl CZ C3
} the output matrix C.
a, a, a, b, b, b, | =1]¢ < ¢C

How? Utilize “directives” properly to direct HLS!




Lab Exercise: Matrix Multiplication (3/4)

 Resource Cost (Post-Implementation Utilization)

Utilization - Post-Implementation

Resource Ttilization Available
LuT 4195
LUTRAM 250

FF 5054

BRAM 8

DSP 5

BUFG 1

Graph Table

Post-Synthests Post-Implementation

CENG3430 Lec09: High Level Synthesis 2022-23 T2

53200
17400
106400
140
220

32

Ttilization %
7.89
1.44
4.75
571
227
3.13

Should NOT
over-utilize
the resources!
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Lab Exercise: Matrix Multiplication (4/4)
« Performance (Latency and HW/SW Speedup)

Performance Estimates

= Timing {(ns)

= Summary

[ Sk e Bty Uneerainy |Shou|d NOT violate timing constraint!

ap_clke 1000 841 1.25 _ _ _
(i.e., the estimated clock period should be less than the target one)

- Latency (clock cycles)

= Summary
Latency Interval

‘mfn max . min - max wpe‘The higher, the slower!

332872 332872 332873 332873 none

SDK Log | 4 Terminall 23
Senal: (COMB, 115200, 8, 1, Mone, None - COMNECTED) - Enceding: (I50-8859-1)

DMA Init done
Loop time for 1824 iterations is -2 cycles

Running Matrix Mult in SW

Total run time for SW on Processor is 25888 cycles over 1824 tests.

Cache cleared
Total run time for AXT DMA + HW accelerator is 333838 cycles over 1824 tests

Acceleration factor: @.77

The lower, the slower!
CENG3430 Lec09: High Level Synthesis 2022-23 T2
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Summary

* High-Level Synthesis Concept

* Vivado High-Level Synthesis
— Inputs and Outputs

— High-Level Synthesis Process
 Interface Synthesis
 Algorithm Synthesis

— Algorithm Optimizations
* Loop
* Array

« Lab Exercise: Accelerating Floating Point Matrix
Multiplication with HLS
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